

Stationery Store

Management System

By

M. Umer Riaz

To

Mr. Irfan Hameed

May 22, 2025

1

TABLE OF CONTENTS

INTRODUCTION ... 2

PROBLEM STATEMENT .. 2

OBJECTIVES ... 3

Business Rules ... 3

SYSTEM DESIGN .. 5

Enterprise Data Model .. 5

ENTITY RELATIONSHIP DIAGRAMS(ERD) ... 5

ENTITY RELATIONS ... 8

Complete ER DIAGRAM .. 11

RELATIONAL SCHEMAS .. 12

RELATIONAL MODEL .. 14

NORMALIZED FORM ... 15

IMPLEMENTATION ... 16

DATABASE DESIGN AND STRUCTURE ... 16

Tables .. 16

TRIGGERS .. 20

Sequences ... 24

Roles .. 25

Sample Data .. 28

Sample Queries ... 30

Storage Estimation .. 33

Conclusion ... 33

2

INTRODUCTION

In the dynamic world of retail, data is the lifeblood of successful operations. This project

represents a transformative approach to managing a physical stationery store's

complex ecosystem through an advanced database solution. By creating an integrated

system that captures every nuance of business operations, we empower the store to

transcend traditional management limitations.

The database serves as a comprehensive digital nervous system, interconnecting critical

business domains such as customer interactions, product management, inventory

control, and organizational relationships. It's not just a technical solution, but a strategic

tool for business optimization.

PROBLEM STATEMENT

The stationery store's existing operational model was fraught with critical challenges

that hindered its potential for growth and efficiency:

• Data fragmentation creating information silos

• Manual tracking leading to frequent human errors

• Inability to generate timely and accurate business insights

• Disconnected systems preventing holistic business understanding

• Lack of real-time visibility into inventory and sales performance

These systemic issues created a significant drag on operational effectiveness, making it

challenging to make informed business decisions and respond quickly to market

dynamics.

3

OBJECTIVES

The project's strategic objectives were carefully crafted to address the store's

comprehensive technological and operational needs:

• Develop a robust, scalable database architecture that can evolve with business

requirements

• Create intricate, meaningful relationships between diverse business entities

• Implement sophisticated data integrity and validation mechanisms

• Establish a dynamic framework for instantaneous data retrieval and advanced

reporting

• Transform raw transactional data into actionable business intelligence

• Reduce operational friction through intelligent automation

Business Rules

• Each customer must have a unique identification number.

• A customer must be registered to place orders.

• Each order must have a unique identification number.

• An order must include at least one item.

• The quantity of any order item must be a positive value.

• Each product must have a unique identification number.

• Product stock quantity cannot be negative at any time.

• Any product price change must be logged before updating to the new price.

• Sales transactions must reduce the product's stock quantity.

• A sale cannot occur if the product stock is insufficient.

• Each product must have only one supplier.

• A supplier must provide at least one product to remain active.

4

• Only administrators can update or delete product information.

• Salespersons are only allowed to manage orders and customer records.

• Managers have read-only access to data for reporting purposes.

• Required fields must always contain valid information.

• Referential integrity between tables must be maintained at all times.

• Orders cannot be processed without complete customer details.

• The total quantity in an order must not exceed the available product stock.

5

SYSTEM DESIGN
Enterprise Data Model

ENTITY RELATIONSHIP DIAGRAMS(ERD)

The database architecture was conceptualized around eight core entities, each

representing a critical aspect of the stationery store's operational ecosystem:

CUSTOMER: The human element, capturing comprehensive interaction histories

6

ORDER_T: Transactional records that form the revenue backbone

CATEGORY: Intelligent product classification and organizational framework

SUPPLIER: External partnership management and supply chain tracking

7

PRODUCT: The core merchandise layer with detailed attributional metadata

ORDER_ITEM: Granular transactional details capturing precise purchase compositions

EMPLOYEE: Workforce management and operational role tracking

8

INVENTORY_TRANSACTION: Dynamic stock movement and tracking mechanism

ENTITY RELATIONS
Each relationship represents a sophisticated data interaction:

ORDER AND ORDER_ITEM: This relationship links Order and Order_Item, where an

order (Order_ID) contains multiple items (Product_ID, Quantity). It ensures accurate

tracking of order details, including item quantities and associated prices.

9

PRODUCT AND INVENTORY_TRANSACTION: Connects Product to

Inventory_Transaction, where stock movements like Sale or Restock update

Stock_Quantity.

PRODUCT AND CATEGORY: Links Product to Category using Category_ID. Each

product belongs to a single category, while a category can have more than one

products.

PRODUCT AND SUPPLIER: Associates Product with Supplier through Supplier_ID to

streamline sourcing. There is mandatory for a supplier to provide a supply for entry in a

table.

10

PRODUCT AND ORDER_ITEM: Relates Product to Order_Item, where Product_ID tracks

items in orders. It ensures accurate management of quantities (Quantity) and product

sales across different orders.

CUSTOMER AND ORDER: Links Customer with Order through Customer_ID, where

each customer can place one or many orders.

EMPLOYEE AND INVENTORY_TRANSACTION: Connects Employee to

Inventory_Transaction using Employee_ID to track stock movements performed by

employees.

11

Complete ER DIAGRAM

12

RELATIONAL SCHEMAS
CUSTOMER: ORDER:

PRODUCT: SUPPLIER:

CATEGORY: ORDER_ITEM:

13

PRODUCT_PRICE_AUDIT: INVENTORY_TRANSACTION:

EMPLOYEE:

14

RELATIONAL MODEL

15

NORMALIZED FORM
The database design inherently adhered to third normal form (3NF) principles, ensuring

optimal data structure without requiring additional normalization.

16

IMPLEMENTATION
DATABASE DESIGN AND STRUCTURE

Implemented using SQL, the database architecture provides a comprehensive

framework.

Tables

• CUSTOMER: Detailed personal and contact information repositories

Code:

CREATE TABLE Customer (

 Customer_ID NUMBER PRIMARY KEY,

 Name VARCHAR2(50) NOT NULL,

 Phone VARCHAR2(15),

 Address VARCHAR2(100) NOT NULL

);

• ORDER_T: Transactional record-keeping with customer linkages

Code:

CREATE TABLE Order_T (

 Order_ID NUMBER PRIMARY KEY,

 Order_Date DATE NOT NULL,

 Customer_ID NUMBER NOT NULL,

 FOREIGN KEY (Customer_ID) REFERENCES Customer(Customer_ID)

);

17

• SUPPLIER: Comprehensive vendor management system

Code:

CREATE TABLE Supplier (

 Supplier_ID NUMBER PRIMARY KEY,

 Name VARCHAR2(50) NOT NULL,

 Phone VARCHAR2(15) NOT NULL,

 Email VARCHAR2(70),

 Address VARCHAR2(100),

 City VARCHAR2(50),

 State VARCHAR2(50),

 Postal_Code VARCHAR2(10)

);

• CATEGORY: Intelligent product classification mechanism

Code:

CREATE TABLE Category (

 Category_ID NUMBER PRIMARY KEY,

 Name VARCHAR2(50) NOT NULL

);

• PRODUCT: Detailed merchandise tracking with dynamic pricing

Code:

CREATE TABLE Product (

 Product_ID NUMBER PRIMARY KEY,

18

 Name VARCHAR2(100) NOT NULL,

 Unit_Price NUMBER(10, 2) NOT NULL,

 Stock_Quantity NUMBER NOT NULL,

 Category_ID NUMBER NOT NULL,

 Supplier_ID NUMBER NOT NULL,

 FOREIGN KEY (Category_ID) REFERENCES Category(Category_ID),

 FOREIGN KEY (Supplier_ID) REFERENCES Supplier(Supplier_ID)

);

• ORDER_ITEM: Granular transaction item documentation

Code:

CREATE TABLE Order_Item (

 Order_ID NUMBER NOT NULL,

 Product_ID NUMBER NOT NULL,

 Quantity NUMBER NOT NULL,

 PRIMARY KEY (Order_ID, Product_ID),

 FOREIGN KEY (Order_ID) REFERENCES Order_T(Order_ID),

 FOREIGN KEY (Product_ID) REFERENCES Product(Product_ID)

);

• EMPLOYEE: Workforce management and role tracking

Code:

CREATE TABLE Employee (

 Employee_ID NUMBER PRIMARY KEY,

19

 Name VARCHAR2(50) NOT NULL,

 Phone VARCHAR2(15) NOT NULL,

 Email VARCHAR2(50),

 Address VARCHAR2(100),

 City VARCHAR2(50),

 Hire_Date DATE NOT NULL,

 Salary NUMBER(10, 2) NOT NULL

);

• INVENTORY_TRANSACTION: Real-time stock movement logging

Code:

CREATE TABLE Inventory_Transaction (

 Transaction_ID NUMBER PRIMARY KEY,

 Quantity NUMBER NOT NULL,

 Transaction_Date DATE NOT NULL,

 Transaction_Type VARCHAR2(50) NOT NULL,

 Employee_ID NUMBER NOT NULL,

 Product_ID NUMBER NOT NULL,

 FOREIGN KEY (Employee_ID) REFERENCES Employee(Employee_ID),

 FOREIGN KEY (Product_ID) REFERENCES Product(Product_ID)

);

20

• PRODUCT_PRICE_AUDIT: Historical pricing modification tracking

Code:

CREATE TABLE Product_Price_Audit (

 Audit_ID NUMBER PRIMARY KEY,

 Product_ID NUMBER,

 Old_Price NUMBER(10, 2),

 New_Price NUMBER(10, 2),

 Change_Date DATE DEFAULT SYSDATE,

 Changed_By VARCHAR2(50),

 FOREIGN KEY (Product_ID) REFERENCES Product(Product_ID)

);

TRIGGERS

Five sophisticated triggers automate and validate critical business processes:

1. update_product_stock Automatically adjusts product inventory upon order

placement, ensuring real-time stock accuracy, takes place after INSERT.

CREATE OR REPLACE TRIGGER update_product_stock

AFTER INSERT ON Order_Item

FOR EACH ROW

BEGIN

 UPDATE Product

 SET Stock_Quantity = Stock_Quantity - :NEW.Quantity

 WHERE Product_ID = :NEW.Product_ID;

END;/

21

2. inv_trans_after_order Generates comprehensive inventory transaction records

for each order, capturing detailed movement metadata, takes place after

INSERT.

CREATE OR REPLACE TRIGGER inv_trans_after_order

AFTER INSERT ON Order_Item

FOR EACH ROW

BEGIN

 -- Sale transaction

 INSERT INTO Inventory_Transaction (Transaction_ID, Quantity,

Transaction_Date, Transaction_Type, Employee_ID, Product_ID)

 VALUES (SEQ_Transaction_ID.NEXTVAL, :NEW.Quantity, SYSDATE, 'Sale',

501, :NEW.Product_ID);

END;

/

3. check_product_stock Implements pre-order validation to prevent overselling

and maintain inventory integrity, takes place before INSERT.

CREATE OR REPLACE TRIGGER check_product_stock

BEFORE INSERT ON Order_Item

FOR EACH ROW

DECLARE

 available_stock INT;

BEGIN

 -- Get current stock for the product

 SELECT Stock_Quantity INTO available_stock FROM Product WHERE

Product_ID = :NEW.Product_ID;

22

 -- Check if sufficient stock is available

 IF available_stock < :NEW.Quantity THEN

 RAISE_APPLICATION_ERROR(-20001, 'Insufficient stock for product ID '

|| :NEW.Product_ID);

 END IF;

END;

/

4. set_order_date Standardizes order documentation by automatically assigning

transaction timestamps, takes place before INSERT.

CREATE OR REPLACE TRIGGER set_order_date

BEFORE INSERT ON Order_T

FOR EACH ROW

BEGIN

 -- Set the order date to current system date if not provided

 IF :NEW.Order_Date IS NULL THEN

 :NEW.Order_Date := SYSDATE;

 END IF;

END;

/

5. audit_product_price_change Creates a transparent, immutable record of all

pricing modifications, takes place after UPDATE of UNIT_PRICE.

CREATE OR REPLACE TRIGGER audit_product_price_change

AFTER UPDATE OF Unit_Price ON Product

23

FOR EACH ROW

BEGIN

 INSERT INTO Product_Price_Audit

(Audit_ID,Product_ID,Old_Price,New_Price,Change_Date)

 VALUES

(Product_Price_Audit_Seq.NEXTVAL,:OLD.Product_ID,:OLD.Unit_Price,:NE

W.Unit_Price,SYSDATE);

END;

/

Significance of Triggers

1. Triggers handle essential operations, such as stock adjustments and transaction

logging, without requiring manual input.

2. By enforcing business rules, triggers prevent invalid transactions, such as orders

exceeding available stock.

3. Price updates are automatically logged via triggers, creating a reliable record for

future analysis and compliance.

24

Sequences

1. SEQ_Transaction_ID

Purpose:

Generates unique transaction identifiers for the Inventory_Transaction table,

enabling effective tracking.

SQL Definition:

CREATE SEQUENCE SEQ_Transaction_ID

START WITH 611

INCREMENT BY 1

NOCACHE

NOCYCLE;

2. PRODUCT_PRICE_AUDIT_SEQ

Purpose:

Provides unique audit identifiers for the Product_Price_Audit table, essential for

maintaining accurate price change records.

SQL Definition:

CREATE SEQUENCE

Product_Price_Audit_Seq

START WITH 1

INCREMENT BY 1;

25

Significance of Sequences

1. Both sequences ensure distinct primary keys, preventing duplication and

maintaining database integrity.

2. ID generation is streamlined, reducing manual workload and minimizing human

error.

3. The sequences efficiently manage growing data volumes, enabling smooth

database operations as the system scales.

Roles

1. Admin:

• Responsible for complete database oversight, including creating,

modifying, and deleting database objects.

o Has full CRUD (Create, Read, Update, Delete) permissions

across all data tables.

CREATE ROLE Admin;

--Grant full privileges to Admin

GRANT CREATE SESSION TO Admin;

GRANT CREATE TABLE TO Admin;

GRANT CREATE VIEW TO Admin;

GRANT CREATE PROCEDURE TO Admin;

GRANT CREATE TRIGGER TO Admin;

GRANT CREATE SEQUENCE TO Admin;

GRANT ALTER ANY TABLE TO Admin;

GRANT DROP ANY TABLE TO Admin;

GRANT SELECT ANY TABLE TO Admin;

26

GRANT INSERT ANY TABLE TO Admin;

GRANT UPDATE ANY TABLE TO Admin;

GRANT DELETE ANY TABLE TO Admin;

GRANT EXECUTE ANY PROCEDURE TO Admin;

GRANT ALL ON Product TO Admin;

GRANT ALL ON ORDER_T TO Admin;

GRANT ALL ON Order_Item TO Admin;

GRANT ALL ON Inventory_Transaction TO Admin;

GRANT ALL ON Customer TO Admin;

GRANT ALL ON Category TO Admin;

GRANT ALL ON Supplier TO Admin;

GRANT ALL ON Employee TO Admin;

GRANT ALL ON Product_Price_Audit TO Admin;

2. Salesperson:

• Limited access to manage orders and products.

• Can insert and view data related to sales but are restricted from

altering system configurations or sensitive data, such as pricing.

CREATE ROLE Salesperson;

--Grant privileges to Salesperson

GRANT CREATE SESSION TO Salesperson;

GRANT SELECT, INSERT, UPDATE ON Product TO Salesperson;

GRANT SELECT, INSERT, UPDATE ON Order_T TO Salesperson;

GRANT SELECT, INSERT, UPDATE ON Order_Item TO Salesperson;

27

GRANT INSERT ON Customer TO Salesperson;

3. Manager:

• Oversees database operations, including inventory management and

sales tracking.

• Authorized to update product details, manage orders, and monitor

price changes, ensuring efficient operational management.

CREATE ROLE Manager;

--Grant privileges to MANAGER

GRANT CREATE SESSION TO Manager;

GRANT SELECT, INSERT, UPDATE ON Product TO Manager;

GRANT SELECT, INSERT, UPDATE ON ORDER_T TO Manager;

GRANT SELECT, INSERT, UPDATE ON Order_Item TO Manager;

GRANT SELECT, INSERT, UPDATE ON Customer TO Manager;

GRANT SELECT, INSERT, UPDATE ON Inventory_Transaction TO Manager;

GRANT SELECT, INSERT, UPDATE ON Employee TO Manager;

28

Sample Data
-- Insert data into Customer Table

INSERT INTO Customer (Customer_ID, Name, Phone, Address)

VALUES (11, 'Ahmed Khan', '03011234567', '123 Main Road, Lahore');

INSERT INTO Customer (Customer_ID, Name, Phone, Address)

VALUES (12, 'Ayesha Tariq', '03019876543', '456 Canal View, Lahore');

INSERT INTO Customer (Customer_ID, Name, Phone, Address)

VALUES (13, 'Zain Ali', '03214567890', '789 Shahrah-e-Faisal, Lahore');

-- Insert data into Order_T Table

INSERT INTO Order_T (Order_ID, Order_Date, Customer_ID)

VALUES (101, TO_DATE('2024-12-01', 'YYYY-MM-DD'), 11);

INSERT INTO Order_T (Order_ID, Order_Date, Customer_ID)

VALUES (102, TO_DATE('2024-12-02', 'YYYY-MM-DD'), 12);

INSERT INTO Order_T (Order_ID, Order_Date, Customer_ID)

VALUES (103, TO_DATE('2024-12-03', 'YYYY-MM-DD'), 13);

-- Insert data into Supplier Table

INSERT INTO Supplier (Supplier_ID, Name, Phone, Email, Address, City, State, Postal_Code)

VALUES (201, 'Bilal Hassan', '03034445566', 'bilal.hassan@gmail.com', 'Block B, Model Town',

'Lahore', 'Punjab', '54000');

INSERT INTO Supplier (Supplier_ID, Name, Phone, Email, Address, City, State, Postal_Code)

VALUES (202, 'Sana Khan', '03225556677', 'sana.khan@hotmail.com', 'Street 12, F-10', 'Lahore',

'Punjab', '54000');

INSERT INTO Supplier (Supplier_ID, Name, Phone, Email, Address, City, State, Postal_Code)

VALUES (203, 'Farhan Malik', '03114442233', 'farhan.malik@yahoo.com', 'Phase 2, Gulshan-e-Iqbal',

'Lahore', 'Punjab', '54000');

-- Insert data into Category Table

INSERT INTO Category (Category_ID, Name)

VALUES (301, 'Stationery');

29

INSERT INTO Category (Category_ID, Name)

VALUES (302, 'Office Supplies');

INSERT INTO Category (Category_ID, Name)

VALUES (303, 'Art Supplies');

-- Insert data into Product Table

INSERT INTO Product (Product_ID, Name, Unit_Price, Stock_Quantity, Category_ID, Supplier_ID)

VALUES (401, 'Ballpoint Pen', 20.00, 200, 306, 201);

INSERT INTO Product (Product_ID, Name, Unit_Price, Stock_Quantity, Category_ID, Supplier_ID)

VALUES (402, 'Notebook', 100.00, 150, 305, 202);

INSERT INTO Product (Product_ID, Name, Unit_Price, Stock_Quantity, Category_ID, Supplier_ID)

VALUES (403, 'Permanent Marker', 50.00, 300, 307, 203);

-- Insert data into Employee Table

INSERT INTO Employee (Employee_ID, Name, Phone, Email, Address, City, Hire_Date, Salary)

VALUES (501, 'Imran Sheikh', '03012345678', 'imran.sheikh@store.com', 'Street 45, DHA', 'Lahore',

TO_DATE('2020-01-15', 'YYYY-MM-DD'), 45000);

INSERT INTO Employee (Employee_ID, Name, Phone, Email, Address, City, Hire_Date, Salary)

VALUES (502, 'Ayesha Siddiq', '03123456789', 'ayesha.siddiq@store.com', 'Block C, Model Town',

'Lahore', TO_DATE('2019-06-12', 'YYYY-MM-DD'), 50000);

INSERT INTO Employee (Employee_ID, Name, Phone, Email, Address, City, Hire_Date, Salary)

VALUES (503, 'Ali Raza', '03214567890', 'ali.raza@store.com', 'Street 10, Gulberg', 'Lahore',

TO_DATE('2021-03-22', 'YYYY-MM-DD'), 47000);

-- Insert data into Order_Item Table

INSERT INTO Order_Item (Order_ID, Product_ID, Quantity)

VALUES (101, 401, 5);

INSERT INTO Order_Item (Order_ID, Product_ID, Quantity)

VALUES (102, 402, 3);

INSERT INTO Order_Item (Order_ID, Product_ID, Quantity)

VALUES (103, 403, 10);

30

-- Insert data into Inventory_Transaction Table

INSERT INTO Inventory_Transaction (Transaction_ID, Quantity, Transaction_Date, Transaction_Type,

Employee_ID, Product_ID)

VALUES (601, 50, TO_DATE('2024-11-30', 'YYYY-MM-DD'), 'Restock', 501, 401);

INSERT INTO Inventory_Transaction (Transaction_ID, Quantity, Transaction_Date, Transaction_Type,

Employee_ID, Product_ID)

VALUES (602, 30, TO_DATE('2024-12-01', 'YYYY-MM-DD'), 'Restock', 502, 402);

INSERT INTO Inventory_Transaction (Transaction_ID, Quantity, Transaction_Date, Transaction_Type,

Employee_ID, Product_ID)

VALUES (603, 40, TO_DATE('2024-12-02', 'YYYY-MM-DD'), 'Sale', 503, 403);

Sample Queries
Testing Sales Transactions in Inventory Transaction Table

SELECT *

FROM Inventory_Transaction

WHERE Transaction_Type = 'Sale';

Checking a specific Customer:

SELECT *

FROM CUSTOMER

WHERE CUSTOMER_ID = 18;

31

Checking a Stock before and after adding on Order Item:

SELECT Product_ID, Stock_Quantity

FROM Product

WHERE Product_ID = 415;

INSERT INTO Order_Item (Order_ID, Product_ID, Quantity)

VALUES (105, 415, 7);

SELECT Product_ID, Stock_Quantity

FROM Product

WHERE Product_ID = 415;

Total Quantity of Products ordered by a specific Customer:

SELECT C.Customer_ID,C.Name AS Customer_Name,SUM(OI.Quantity) AS

Total_Quantity

FROM Customer C,Order_T O,Order_Item OI

WHERE C.Customer_ID = O.Customer_ID AND O.Order_ID = OI.Order_ID AND

C.Customer_ID = 15

32

GROUP BY C.Customer_ID, C.Name

ORDER BY Total_Quantity DESC;

Testing Product Price Update and Price Audit Logging:

UPDATE Product

SET Unit_Price = 820

WHERE Product_ID = 419;

SELECT *

FROM Product_Price_Audit

WHERE Product_ID = 419;

33

Storage Estimation

Table

Bytes

Per

Record

Initial

Records

Growth

Rate

(Yearly)

Expected

Records (5

Years)

Storage in

Bytes

Customer 165 500 100% 15,500 2,557,500

Order_T 64 2,000 80% 34,028 2,177,792

Order_Item 80 10,000 90% 148,029 11,842,320

Supplier 315 200 10% 322 101,430

Category 54 50 5% 64 3,456

Product 184 1,000 10% 1,611 296,424

Employee 215 100 1% 105 22,575

Inventory_Transaction 141 5,000 60% 49,766 7,015,806

Product_Price_Audit 105 3,000 20% 7,458 783,090

Conclusion
The database system represents a paradigm shift in stationery store management. By

creating an intelligent, interconnected technological ecosystem, we've transformed raw

data into a strategic business asset, enabling unprecedented operational efficiency and

insights.

More than a technical solution, this database serves as a catalyst for organizational

transformation, positioning the stationery store for sustainable growth and competitive

advantage.

